On Generalized Non-Symmetric Recurrent Spaces by

Fahmi Yaseen Abdo Qasem
fahmiyaseen@hotmail.com , fyaqasem@gmail.com
and

Adel Mohammed Ali Al-Qashbari

Adel_ma71@yahoo.com
Dept.of Maths., Faculty of Educ. -Aden,
University of Aden, Khormaksar, Aden, Republic of Yemen

Abstract.

In this paper we introduced a Finsler space F_{n} whose Cartan's third curvature tensor $R_{j k h}^{i}$ and Cartan's fourth curvature tensor $K_{j k h}^{i}$ are satisfied the generalized of recurrence condition with respect to Cartan's connection parameter $\Gamma_{k h}^{* i}$ which given by the following conditions $\left.\quad R_{j k h}^{i}\right|_{l}=\lambda_{l} R_{j k h}^{i}+\mu_{l}\left(\delta_{h}^{i} g_{j k}-\delta_{k}^{i} g_{j h}\right)$ and $\left.K_{j k h}^{i}\right|_{l}=\lambda_{l} K_{j k h}^{i}+\mu_{l}\left(\delta_{h}^{i} g_{j k}-\delta_{k}^{i} g_{j h}\right)$, respectively, where I_{l} is vcovariant differentiation, λ_{l} and μ_{l} are the recurrence vectors field and such spaces are called as a generalized R^{v}-recurrent spaceand a generalized K^{v}-recurrent space, respectively, denoted them briefly by $G R^{v}-R F_{n}$ and $G K^{v}-R F_{n}$, respectively.

The purpose of this paper is to devolpe the above spaces by study them in h-isotropic and non-symmetric spaces. We have obtained the v-covariant derivative for Cartan's third andfourth curvature tensors $R_{j k h}^{i}$ and $K_{j k h}^{i}$, the $\mathrm{h}(\mathrm{v})$-torsion tensor $H_{k h}^{i}$ and other different tensors, we proved that, R-Ricci tensor $R_{j k}$ andKRicci tensor $K_{j k}$ are non-vanishing in our spaces. We obtain different theorems for some tensors satisfied the generalized recurrence conditions of the above spaces.Some conditions have been pointed out which reduce these spaces $(n>2)$ into a Finsler space of curvature tensor. We obtained different theorems for some tensors satisfying separately the conditions of generalized recurrent spaces and established the decomposition of curvature tensors field $\stackrel{+}{R_{j k h}^{i}}(x, y)$ and $\stackrel{+}{K_{j k h}^{i}}(x, y)$ in a Finsler space F_{n} equipped with non-symmetric connection of Cartan's third curvature tensor $R_{j k h}^{i}$ and Cartan's fourth curvature tensor $K_{j k h}^{i}$.
Key words: Generalized R^{v}-recurrent space, Generalized K^{v} recurrent space, Generalized ${ }^{+}{ }^{v}$ - non symmetric recurrent space, Generalized $\stackrel{+}{K}^{v}$ - non symmetric recurrent space.

Introduction. On account of the different connections of Finsler space, the concept of the recurrent for different curvature tensors have been discussed by M. Matsumoto [7], P.N. Pandey ([10], [11]), R.S.D. Dubey and A.K. Srivastava [5], P.N. Pandey and R.B.Misra [12], P.N. Pandey and V.J. Dwivedi [13], Z. Ahsanand M.Ali [1], R. Verma [20], S. Dikshit [4], F.Y.A. Qasem [16], P.N. Pandey and S. Pal [14]. The generalized recurrent space studied by U.C. De and N. Guha [3], Y.B. Maralebhavi and M. Rathnamma [6]. M. L. Zlatanović and S. M. Minčić [22] whom obtainedidentities for curvature tensors in generalized Finsler space. C. K. Mishra and G. Lodhi [8] discussed C^{h}-recurrent and C^{v} recurrent Finsler spaces of second order and obtained different theorems regarding these spaces, the decomposability of the curvature tensor in recurrent conformal Finsler spaces also, they studied the decomposition of curvature tensor field $\stackrel{+}{R_{j k h}^{i}}(x, y)$ in a Finsler space equipped with non-symmetric connection were study by P. Mishra, K. Srivistava and S. B. Mishra [9].P.N. Pandey, S. Saxena and A.Goswani [15], F.Y.A. Qasem and A.M.A. AlQashbari ([17], [18]) and others.

Let us consider an n-dimensional Finsler space F_{n} equipped with the metric function F satisfying the requisite conditions [19]. Let consider the components of the corresponding metric tensor $g_{i j}$, Cartan's connection parameter $\Gamma_{j k}^{* i}$ and Berwald's connection parameter $G_{j k}^{i}{ }^{*}$. These are symmetric in their lower indices and positively homogeneous of degree zero in the directional argument. The two sets of quantities $g_{i j}$ and its associate tensor $g^{i j}$ are related by

$$
g_{i j} g^{j k}=\delta_{i}^{k}= \begin{cases}1, & \text { if } \quad i=k \tag{1.1}\\ 0, & \text { if } \quad i \neq k\end{cases}
$$

The vectors y_{i} and y^{i} satisfies the following relations

[^0]a) $y_{i}=g_{i j} y^{j}$
and
b) $\dot{\partial}_{j} y_{i}=g_{i j}$

The tensor $C_{i j k}{ }^{* 2}$ defined by

$$
\begin{equation*}
C_{i j k}=\frac{1}{2} \dot{\partial}_{i} g_{j k}=\frac{1}{4} \dot{\partial}_{i} \dot{\partial}_{j} \dot{\partial}_{k} F^{2} \tag{1.3}
\end{equation*}
$$

is known as (h) $h v$ - torsion tensor [7] . It is positively homogeneous of degree -1 in the directional arguments and symmetric in all its indices.

The (v) hv-torsion tensor $C_{i k}^{h}$ and its associate (h) hv-torsion tensor $C_{i j k}$ are related by

$$
\begin{equation*}
\text { a) } C_{j k}^{i} y^{j}=0=C_{k j}^{i} y^{j} \tag{1.4}
\end{equation*}
$$

b) $y_{i} C_{j k}^{i}=0 \quad$ and
c) $C_{i j k}:=g_{h j} C_{i k}^{h}$.

The (v) hv-torsion tensor $C_{i k}^{h}$ is also positively homogeneous of degree -1 in the directional argument and symmetric in its lower indices.
É. Cartan deduced the v-covariant derivativefor an arbitrary vector filed X^{i} with respect to x^{k} [2]

$$
\begin{equation*}
D X^{i}=\left.F X^{i}\right|_{k} D l^{k}+X_{\mid k}^{i} d x^{k}+y^{k}\left(\dot{\partial}_{k} X^{i}\right) \frac{d F}{F} \tag{1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\left.X^{i}\right|_{k}:=\dot{\partial}_{k} X^{i}+X^{r} C_{r k}^{i} \tag{1.6}
\end{equation*}
$$

The metric tensor $g_{i j}$ and the vector y^{i} are covariant constant with respect to the above process, i.e.
a) $\left.y^{i}\right|_{k}=\delta_{k}^{i} \quad$ and
b) $\left.g_{i j}\right|_{k}=0$.

The quantities $H_{j k h}^{i}$ and $H_{k h}^{i}$ form the components of tensors and they called h-curvature tensorof Berwald (Berwald curvature tensor) and $h(v)$-torsion tensor, respectively and defined as follow:
a) $\quad H_{j k h}^{i}:=\partial_{j} G_{k h}^{i}+G_{k h}^{r} G_{r j}^{i}+G_{r h j}^{i} G_{k}^{r}-h / k *$ and
b) $H_{k h}^{i}:=\partial_{h} G_{k}^{i}+G_{k}^{r} C_{r h}^{i}-h / k$.
$*_{2}$ Unless stated otherwise. Henceforth all geometric objects are assumed to be functions of line-elements.

They are skew-symmetric in their lower indices, i.e. k and h. They are positively homogeneous of degree zero and one, respectively in their directional argument.
These tensors were constructed initially by mean of the tensor H_{h}^{i}, called the deviation tensor, given by

$$
\begin{equation*}
\text { a) } H_{h}^{i}:=2 \partial_{h} G^{i}-\partial_{r} G_{h}^{i} y^{r}+2 G_{h s}^{i} G^{s}-G_{s}^{i} G_{h}^{s}, \tag{1.9}
\end{equation*}
$$ where

$$
\text { b) } \quad \dot{\partial}_{k} G_{h}^{i}=G_{k h}^{i} .
$$

The deviation tensor H_{h}^{i} is positively homogeneous of degree two in the directional argument.
The quantities $H_{j k h}^{i}, H_{k h}^{i}$ and H_{k}^{i} are satisfied the following [19]:
a) $H_{j k h}^{i}=\partial_{j} H_{k h}^{i}$
b) $H_{k r}^{r}:=H_{k}$ and
c)
$H_{j k . h}:=g_{j r} H_{h k}^{r}$.

Cartan's third and fourth curvature tensors are defined as
a)
$R_{j k h}^{i}=\dot{\partial}_{h} \Gamma_{j k}^{* i}+\left(\dot{\partial}_{l} \Gamma_{j k}^{* i}\right) G_{h}^{l}+C_{j m}^{i}\left(\dot{\partial}_{k} G_{h}^{m}-G_{k l}^{m} G_{h}^{l}\right)+\Gamma_{m k}^{* i} \Gamma_{j h}^{* m}-$ k / h
and

$$
\text { b) } \quad K_{r h k}^{i}:=\partial_{k} \Gamma_{h r}^{* i}+\left(\dot{\partial}_{l} \Gamma_{r k}^{* i}\right) G_{h}^{l}+\Gamma_{m k}^{* i} \Gamma_{h r}^{* m}-k / h *
$$

respectively.
Cartan's third curvature tensor $R_{j k h}^{i}$, Cartan's fourth curvature tensor $K_{j k h}^{i}$ andtheir associate curvature tensors $R_{i j k h}$ and $K_{i j k h}$, respectively are given by
a) $R_{j k h}^{i} y^{j}=H_{k h}^{i}=K_{j k h}^{i} y^{j}$
b)

$$
\begin{equation*}
g_{r j} R_{i h k}^{r}=R_{i j k h}, \tag{1.12}
\end{equation*}
$$

c) $R_{j k i}^{i}:=R_{j k}$,
d) $g_{r j} K_{i h k}^{r}=K_{i j k h} \quad$ and
e)

$$
K_{j k i}^{i}:=K_{j k}
$$

Ricci tensors $R_{j k}$ and $K_{j k}$ of the curvature tensor $R_{j k h}^{i}$ and $K_{j k h}^{i}$, respectively, the curvature vectors R_{k} and K_{k} are connected by
a) $R_{j k} y^{k}=R_{j}$
and
b) $K_{j k} y^{k}=K_{k}$.
F.Y.A. Qasem and A.M.A. AL-Qashbari [17] discussed a Generalized R^{h} - Recurrent spacewhose Cartan's third curvature tensor $R_{j k h}^{i}$ satisfies the generalized recurrence property in the sense of Cartan by using the h-covariant differentiation.

2. On Study of Generalized $\boldsymbol{R}^{\boldsymbol{v}}$ - Recurrent Space and $\boldsymbol{K}^{\boldsymbol{v}}$ -

Recurrent Space

We shall study some properties of a generalized R^{v} - recurrent spaceand a generalized K^{v} - recurrent spacewhose Cartan's third and fourth curvature tensors $R_{j k h}^{i}$ and $K_{j k h}^{i}$ satisfythe following conditions

$$
\begin{equation*}
\left.R_{j k h}^{i}\right|_{l}=\lambda_{l} R_{j k h}^{i}+\mu_{l}\left(\delta_{h}^{i} g_{j k}-\delta_{k}^{i} g_{j h}\right) \tag{2.1}
\end{equation*}
$$

$R_{j k h}^{i} \neq 0$
and

$$
\begin{equation*}
\left.K_{j k h}^{i}\right|_{l}=\lambda_{l} K_{j k h}^{i}+\mu_{l}\left(\delta_{h}^{i} g_{j k}-\delta_{k}^{i} g_{j h}\right) \tag{2.2}
\end{equation*}
$$

$K_{j k h}^{i} \neq 0 \quad$,
respectively.
where $\left.\right|_{l}$ is v-covariant differentiation (Cartan's first kind covariant differential operator),
λ_{l} and μ_{l} are called recurrence vectors.
Definition 2.1. A Finsler space F_{n} whoseCartan's third curvature tensor $R_{j k h}^{i}$ is satisfying the condition (2.1), where λ_{l} and μ_{l} are non-null covariant vectors field, is called a generalized R^{v}. recurrent space and the tensor will be called generalized v recurrent, respectively. We shall denote them briefly by $G R^{v}-R F_{n}$ and $G v-R$, respectively.

Definition 2.2. A Finsler space F_{n} whoseCartan's fourth curvature tensor $K_{j k h}^{i}$ is satisfying the condition (2.2), where λ_{l} and μ_{l} are non-null covariant vectors field, is called a generalized K^{v} recurrent space and the tensor will be called generalized v -
recurrent, respectively. We shall denote them briefly by $G K^{v}-R F_{n}$ and $G v-R$, respectively.
Transvecting the conditions (2.1) and (2.2) by y^{j}, using (1.7a), (1.12a), (1.2a) and in view of (1.1), we get

$$
\begin{equation*}
\left.H_{k h}^{i}\right|_{l}=\lambda_{l} H_{k h}^{i}+R_{l k h}^{i}+\mu_{l}\left(\delta_{h}^{i} y_{k}-\delta_{k}^{i} y_{h}\right) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.H_{k h}^{i}\right|_{l}=\lambda_{l} H_{k h}^{i}+K_{l k h}^{i}+\mu_{l}\left(\delta_{h}^{i} y_{k}-\delta_{k}^{i} y_{h}\right) \tag{2.4}
\end{equation*}
$$

respectively.
Thus, we conclude
Theorem 2.1. In $G R^{v}-R F_{n}$ and $G K^{v}-R F_{n}$, the v-covariant derivative of the first order for the $h(v)$-torsion tensor $H_{k h}^{i}$ given by the conditions (2.3) and (2.4), respectively.
The condition (2.3) and (2.4) can be written as

$$
\begin{equation*}
R_{l k h}^{i}=\left.H_{k h}^{i}\right|_{l}-\lambda_{l} H_{k h}^{i}-\mu_{l}\left(\delta_{h}^{i} y_{k}-\delta_{k}^{i} y_{h}\right) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{l k h}^{i}=\left.H_{k h}^{i}\right|_{l}-\lambda_{l} H_{k h}^{i}-\mu_{l}\left(\delta_{h}^{i} y_{k}-\delta_{k}^{i} y_{h}\right) \tag{2.6}
\end{equation*}
$$

respectively.
Thus, we conclude
Theorem 2.2. In $G R^{v}-R F_{n}$ and $G K^{v}-R F_{n}$, Cartan's third and fourth curvature tensors $R_{j k h}^{i}$ and $K_{j k h}^{i}$, respectively, defined by any one of the conditions (2.5) or (2.6).
Theorem 2.3. Cartan's third curvature tensor $R_{j k h}^{i}$ in $G R^{v}-R F_{n}$ coincides withCartan's fourth curvature tensorK $K_{j k h}^{i}$ in $G K^{v}-R F_{n}$ and they are in terms of the $h(v)$-torsion tensor $H_{k h}^{i}$.
Transvecting the conditions (2.1), (2.2), (2.3) and (2.4) by $g_{i p}$, using (1.7b), (1.12b), (1.12d), (1.10c) and in view of (1.1), we get

$$
\begin{equation*}
\left.R_{j p k h}\right|_{l}=\lambda_{l} R_{j p k h}+\mu_{l}\left(g_{h p} g_{j k}-g_{k p} g_{j h}\right) \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
\left.K_{j p k h}\right|_{l}=\lambda_{l} K_{j p k h}+\mu_{l}\left(g_{h p} g_{j k}-g_{k p} g_{j h}\right) \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.H_{k p . h}\right|_{l}=\lambda_{l} H_{k p . h}+K_{l p k h}+\mu_{l}\left(g_{h p} y_{k}-g_{k p} y_{h}\right) \tag{2.10}
\end{equation*}
$$

respectively. Conversely, the transvection of the conditions (2.7), (2.8), (2.9) and (2.10) by $g^{i p}$, gives us the conditions (2.1), (2.2), (2.3) and (2.4), respectively. Thus, the conditions (2.1), (2.2), (2.3) and (2.4) are equivalent to the conditions (2.7), (2.8), (2.9) and (2.10), respectively. Therefore $G R^{v}-R F_{n}$ characterized by the conditions (2.1) or (2.7) and $G K^{v}-R F_{n}$ characterized by the conditions (2.2) or (2.8), respectively.
Thus, we conclude
Theorem 2.4.An $G R^{v}$ - $R F_{n}$, may the characterized by the condition (2.7).

Theorem 2.5. AnG $R^{v}-R F_{n}$, may the characterized by the condition (2.8).
Theorem 2.6. InG $R^{v}-R F_{n}$ and $G K^{v}-R F_{n}$, thev-covariant derivative of the first order for the associate torsion tensor $H_{k p . h}$ is given by the conditions (2.9) and (2.10), respectively.
The conditions (2.9) and (2.10) can be written as

$$
\begin{equation*}
R_{l p k h}=\left.H_{k p . h}\right|_{l}-\lambda_{l} H_{k p . h}-\mu_{l}\left(g_{h p} y_{k}-g_{k p} y_{h}\right) \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{l p k h}=\left.H_{k p . h}\right|_{l}-\lambda_{l} H_{k p . h}-\mu_{l}\left(g_{h p} y_{k}-g_{k p} y_{h}\right), \tag{2.12}
\end{equation*}
$$

respectively.
Thus, we conclude
Theorem 2.7. In $G R^{v}-R F_{n}$ and $G K^{v}-R F_{n}$, the associate curvature tensors $R_{l p k h}$ and $K_{l p k h}$ defined by any one of the conditions (2.11) or (2.12).
Theorem 2.8. The associate curvature tensors $R_{l p k h}$ in $G R^{v}-R F_{n}$ coincides with the associate curvature tensors $K_{l p k h}$ in $G K^{v}$ $R F_{n}$ and they are in terms of the associate torsion tensor $H_{k p . h}$.

Contracting the indices i and h in (2.1) and (2.2), using (1.15c), (1.15e) and in view of (1.1), we get

$$
\begin{equation*}
\left.R_{j k}\right|_{l}=\lambda_{l} R_{j k}+(n-1) \mu_{l} g_{j k} \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.K_{j k}\right|_{l}=\lambda_{l} K_{j k}+(n-1) \mu_{l} g_{j k} \tag{2.14}
\end{equation*}
$$

respectively.
The conditions (2.13) and (2.14) show that R-Ricci tensor $R_{j k}$ and K-Ricci tensor $K_{j k}$ cannot vanish, since the vanishing of any one of them would imply the vanishing of the covariant vector field μ_{l}, i.e. $\mu_{l}=0$, a contradiction.

Thus, we conclude
Theorem 2.9. In $R^{v}-R F_{n}$ and $G K^{v}-R F_{n}, R$-Ricci tensor $R_{j k}$ and K-Ricci tensor $K_{j k}$ are non-vanishing.

Contracting the indices i and h in (2.3) and (2.4), using (1.13b), (1.12c), (1.12e) and in view of (1.1), we get

$$
\begin{equation*}
\left.H_{k}\right|_{l}=\lambda_{l} H_{k}+R_{l k}+(n-1) \mu_{l} y_{k} \tag{2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.H_{k}\right|_{l}=\lambda_{l} H_{k}+K_{l k}+(n-1) \mu_{l} y_{k} \tag{2.16}
\end{equation*}
$$

respectively.
The conditions (2.15) and (2.16) show that the curvature vector H_{k} cannot vanish, since the vanishing of any one of them would imply the vanishing of the covariant vector field μ_{l}, i.e. $\mu_{l}=0$, a contradiction.
Thus, we conclude
Theorem 2.10. In $G R^{v}-R F_{n}$ and $G K^{v}-R F_{n}$, the curvature vector H_{k} is non-vanishing.
The conditions (2.15) and (2.16) can be written as

$$
\begin{equation*}
R_{l k}=\left.H_{k}\right|_{l}-\lambda_{l} H_{k}-(n-1) \mu_{l} y_{k} \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{l k}=\left.H_{k}\right|_{l}-\lambda_{l} H_{k}-(n-1) \mu_{l} y_{k} \tag{2.18}
\end{equation*}
$$

respectively.
Thus, we conclude
Theorem 2.11. In $G R^{v}-R F_{n}$ and $G K^{v}-R F_{n}$, R-Ricci tensor $R_{j k}$ and K-Ricci tensor $K_{j k}$ defined by any one of the conditions (2.17) or (2.18).

Theorem 2.12. R-Ricci tensor $R_{j k}$ in $G R^{v}$ - $R F_{n}$ coincides with K Ricci tensor $K_{j k}$ in $G K^{v}-R F_{n}$ and they are in terms of the curvature vector H_{k}.
Transvecting the conditions (2.13) and (2.14) by y^{k}, using (1.7a), (1.13a), (1.13b) and (1.2a), we get

$$
\begin{equation*}
\left.R_{j}\right|_{l}=\lambda_{l} R_{j}+R_{j l}+(n-1) \mu_{l} y_{j} \tag{2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.K_{j}\right|_{l}=\lambda_{l} K_{j}+K_{j l}+(n-1) \mu_{l} y_{j}, \tag{2.20}
\end{equation*}
$$

respectively.
The conditions (2.19) and (2.20) show that the curvature vectors R_{j} and K_{j} cannot vanish, since the vanishing of any one of them would imply the vanishing of the covariant vector field μ_{l}, i.e. $\mu_{l}=0$, a contradiction.
Thus, we conclude
Theorem 2.13. In $G R^{v}-R F_{n}$ and $G K^{v}-R F_{n}$, the curvature vectors R_{j} and K_{j} are non-vanishing.
The conditions (2.19) and (2.20) can be written as

$$
\begin{equation*}
R_{j l}=\left.R_{j}\right|_{l}-\lambda_{l} R_{j}-(n-1) \mu_{l} y_{j} \tag{2.21}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{j l}=\left.K_{j}\right|_{l}-\lambda_{l} K_{j}-(n-1) \mu_{l} y_{j} \tag{2.22}
\end{equation*}
$$

respectively.
Thus, we conclude
Theorem 2.14. In $G R^{v}-R F_{n}$ and $G K^{v}-R F_{n}$, R-Ricci tensor $R_{j l}$ and K-Ricci tensor $K_{j l}$ defined by the conditions (2.21) and (2.22), respectively.
Remark 2.1. In view of (2.17) and (2.18), both R-Ricci tensor $R_{j l} i n G R^{v}-R F_{n}$ and \quad K-Ricci tensor $K_{j l}$ in $G K^{v}-R F_{n}$ are defined in terms of the curvature vector H_{k} (in sense of Berwald), different in the senses.
Remark 2.2. In view of (2.21), R-Ricci tensor $R_{j l}$ is defined in terms of the curvature vector R_{j} (both Cartan's third curvature tensors $R_{j k h}^{i}$) and in view of (2.22), K-Ricci tensor $K_{j l}$ is defined in
terms of the curvature vector K_{j} (both Cartan's fourth curvature tensor $K_{j k h}^{i}$), similar in the senses.
Differentiating the conditions (2.3) and (2.4) partially with respect to y^{j}, using (1.11b) and (1.2c), we get
(2.23)
$\dot{\partial}_{j}\left(\left.H_{k h}^{i}\right|_{l}\right)=\left(\dot{\partial}_{j} \lambda_{l}\right) H_{k h}^{i}+\lambda_{l}\left(H_{j k h}^{i}\right)+\dot{\partial}_{j} R_{l k h}^{i}+\left(\dot{\partial}_{j} \mu_{l}\right)\left(\delta_{h}^{i} y_{k}-\right.$ $\delta_{k}^{i} y_{h}$)
$+\mu_{l}\left(\delta_{h}^{i} g_{j k}-\delta_{k}^{i} g_{j h}\right)$
and
(2.24)
$\dot{\partial}_{j}\left(\left.H_{k h}^{i}\right|_{l}\right)=\left(\dot{\partial}_{j} \lambda_{l}\right) H_{k h}^{i}+\lambda_{l}\left(H_{j k h}^{i}\right)+\dot{\partial}_{j} K_{l k h}^{i}+\left(\dot{\partial}_{j} \mu_{l}\right)\left(\delta_{h}^{i} y_{k}-\right.$ $\delta_{k}^{i} y_{h}$)
$+\mu_{l}\left(\delta_{h}^{i} g_{j k}-\delta_{k}^{i} g_{j h}\right)$,
respectively.
Using the commutation formula exhibited by (1.6) for the $\mathrm{h}(\mathrm{v})$ torsion tensor $H_{j k}^{i}$ in the conditions (2.23) and (2.24) and using (1.10a), we get
(2.25)

$$
\begin{aligned}
& \left.H_{j k h}^{i}\right|_{l}+H_{k h}^{r}\left(\dot{\partial}_{j} C_{l r}^{i}\right)-H_{r h}^{i}\left(\dot{\partial}_{j} C_{l k}^{r}\right)-H_{k r}^{i}\left(\dot{\partial}_{j} C_{l h}^{r}\right)+ \\
& C_{l j}^{r} H_{r k h}^{i}=\left(\dot{\partial}_{j} \lambda_{l}\right) H_{k h}^{i} \\
& +\lambda_{l} H_{j k h}^{i}+\dot{\partial}_{j} R_{l k h}^{i}+\left(\dot{\partial}_{j} \mu_{l}\right)\left(\delta_{h}^{i} y_{k}-\delta_{k}^{i} y_{h}\right) \\
& +\mu_{l}\left(\delta_{h}^{i} g_{j k}-\delta_{k}^{i} g_{j h}\right)
\end{aligned}
$$

and
(2.26)

$$
\begin{aligned}
& \left.H_{j k h}^{i}\right|_{l}+H_{k h}^{r}\left(\dot{\partial}_{j} C_{l r}^{i}\right)-H_{r h}^{i}\left(\dot{\partial}_{j} C_{l k}^{r}\right)-H_{k r}^{i}\left(\dot{\partial}_{j} C_{l h}^{r}\right)+ \\
& C_{l j}^{r} H_{r k h}^{i}=\left(\dot{\partial}_{j} \lambda_{l}\right) H_{k h}^{i}
\end{aligned}
$$

$+\lambda_{l} H_{j k h}^{i}+\dot{\partial}_{j} K_{l k h}^{i}+\left(\dot{\partial}_{j} \mu_{l}\right)\left(\delta_{h}^{i} y_{k}-\delta_{k}^{i} y_{h}\right)+\mu_{l}\left(\delta_{h}^{i} g_{j k}-\right.$ $\delta_{k}^{i} g_{j h}$)

The equations (2.25) and (2.26) together implies to

$$
\begin{equation*}
\left.H_{j k h}^{i}\right|_{l}=\lambda_{l} H_{j k h}^{i}+\mu_{l}\left(\delta_{h}^{i} g_{j k}-\delta_{k}^{i} g_{j h}\right) \tag{2.27}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
H_{k h}^{r}\left(\dot{\partial}_{j} C_{l r}^{i}\right)-H_{r h}^{i}\left(\dot{\partial}_{j} C_{l k}^{r}\right)-H_{k r}^{i}\left(\dot{\partial}_{j} C_{l h}^{r}\right)+C_{l j}^{r} H_{r k h}^{i} \tag{2.28}
\end{equation*}
$$

$$
=\left(\dot{\partial}_{j} \lambda_{l}\right) H_{k h}^{i}+\dot{\partial}_{j} R_{l k h}^{i}+\left(\dot{\partial}_{j} \mu_{l}\right)\left(\delta_{h}^{i} y_{k}-\delta_{k}^{i} y_{h}\right)
$$

and

$$
\begin{equation*}
H_{k h}^{r}\left(\dot{\partial}_{j} C_{l r}^{i}\right)-H_{r h}^{i}\left(\dot{\partial}_{j} C_{l k}^{r}\right)-H_{k r}^{i}\left(\dot{\partial}_{j} C_{l h}^{r}\right)+C_{l j}^{r} H_{r k h}^{i} \tag{2.29}
\end{equation*}
$$

$$
=\left(\dot{\partial}_{j} \lambda_{l}\right) H_{k h}^{i}+\dot{\partial}_{j} K_{l k h}^{i}+\left(\dot{\partial}_{j} \mu_{l}\right)\left(\delta_{h}^{i} y_{k}-\delta_{k}^{i} y_{h}\right)
$$

Thus, we conclude
Theorem 2.15.InG $R^{v}-R F_{n}$, Berwald curvature tensor $H_{j k h}^{i}$ is $G v-R$ if and only if the condition (2.28) holds good.
Theorem 2.16.InG $K^{v}-R F_{n}$, Berwald curvature tensor $H_{j k h}^{i}$ is $G v$-Rif and only if the condition (2.29) holds good.
The condition (2.25) and (2.26) can be written as
$\dot{\partial}_{j} R_{l k h}^{i}=H_{k h}^{r}\left(\dot{\partial}_{j} C_{l r}^{i}\right)-H_{r h}^{i}\left(\dot{\partial}_{j} C_{l k}^{r}\right)-H_{k r}^{i}\left(\dot{\partial}_{j} C_{l h}^{r}\right)+C_{l j}^{r} H_{r k h}^{i}$
$-\left(\dot{\partial}_{j} \lambda_{l}\right) H_{k h}^{i}-\left(\dot{\partial}_{j} \mu_{l}\right)\left(\delta_{h}^{i} y_{k}-\delta_{k}^{i} y_{h}\right)$
and
$\dot{\partial}_{j} K_{l k h}^{i}=H_{k h}^{r}\left(\dot{\partial}_{j} C_{l r}^{i}\right)-H_{r h}^{i}\left(\dot{\partial}_{j} C_{l k}^{r}\right)-H_{k r}^{i}\left(\dot{\partial}_{j} C_{l h}^{r}\right)+C_{l j}^{r} H_{r k h}^{i}$
$-\left(\dot{\partial}_{j} \lambda_{l}\right) H_{k h}^{i}-\left(\dot{\partial}_{j} \mu_{l}\right)\left(\delta_{h}^{i} y_{k}-\delta_{k}^{i} y_{h}\right)$,
respectively.
Thus, we conclude
Theorem 2.17. The tensor $\left(\dot{\partial}_{j} R_{l k h}^{i}\right) \quad i n G R^{v}-R F_{n} \quad$ coincides withtensor $\left(\dot{\partial}_{j} K_{l k h}^{i}\right)$ in $G K^{v}-R F_{n}$ provided the condition (2.27) holds.

Let us consider a Finslerspace which Cartan's third curvature tensors $R_{j k h}^{i}$ is satisfying the condition

$$
\begin{equation*}
R_{j k h}^{i}=K\left(\delta_{h}^{i} g_{j k}-\delta_{k}^{i} g_{j h}\right) \tag{2.30}
\end{equation*}
$$

The space characterized by the condition (2.30) is called h-isotropic [7]. It is to be noted that the constant for the concept of h-isotropic does not coincide with that constant curvature due to Berwald. For
an h-isotropic space, K is constant. Therefore for the space considered K is constant.

Taking the v-covariant derivative for the condition (2.30) with respect to y^{l}, using (1.7b), we get
$\left.R_{j k h}^{i}\right|_{l}=K\left(\delta_{h}^{i} g_{j k}-\delta_{k}^{i} g_{j h}\right)$.
In view of the condition (2.1), the above equation becomes
$\lambda_{l} R_{j k h}^{i}=\left(K-\mu_{l}\right)\left(\delta_{h}^{i} g_{j k}-\delta_{k}^{i} g_{j h}\right)$
which can be written as

$$
\begin{equation*}
R_{j k h}^{i}=\beta\left(\delta_{h}^{i} g_{j k}-\delta_{k}^{i} g_{j h}\right) \tag{2.31}
\end{equation*}
$$

where $\beta=\frac{\left(K-\mu_{l}\right)}{\lambda_{l}}$.
Theorem 2.18.In $G R^{v}-R F_{n}$, the h-isotropic space is characterized by the condition (2.31).
3.Decomposition of the Curvature Tensors $\stackrel{+}{\boldsymbol{R}}_{\boldsymbol{j} k h}^{\boldsymbol{i}}(x, y)$ and $\stackrel{+}{K}_{j k h}^{i}(x, y)$ in a Finsler Space Equipped with Non-Symmetric Connection

We shall discuss some of the decompositions for the curvature tensors field $\stackrel{+}{R_{j k h}^{i}}(x, y)$ and $\stackrel{+}{K_{j k h}^{i}}(x, y)$ in a Finsler space equipped with non-symmetric connection for Cartan's third curvature tensor $R_{j k h}^{i}$ and Cartan's fourth curvature tensor $K_{j k h}^{i}$.
G. H. Vranceanu [21] has defined a non-symmetric connection $\left(\Gamma_{j k}^{* i} \neq \Gamma_{k j}^{* i}\right)$ in $\quad n$-dimensional Finsler space F_{n}. Let consider an n-dimensional Finsler space F_{n} with non-symmetric connection $\left(\Gamma_{j k}^{* i} \neq \Gamma_{k j}^{* i}\right)$ which is based on a non-symmetric fundamental tensor $g_{i j}(x, y) \neq g_{j i}(x, y)$. Let write

$$
\begin{equation*}
\Gamma_{j k}^{* i}=\mathrm{M}_{j k}^{* i}+\frac{1}{2} \mathrm{~N}_{j k}^{* i} \tag{3.1}
\end{equation*}
$$ where $\mathrm{M}_{j k}^{* i}$ and $\frac{1}{2} \mathrm{~N}_{j k}^{* i}$ are respectively the symmetric and skewsymmetric parts of $\Gamma_{j k}^{* i}$.

We introduce another connection coefficient $\Gamma_{k j}^{* i}(x, y)$ defined as order

$$
\begin{equation*}
\bar{\Gamma}_{j k}^{* i}=\mathrm{M}_{j k}^{* i}-\frac{1}{2} \mathrm{~N}_{j k}^{* i} \tag{3.2}
\end{equation*}
$$

With the help of the conditions (4.1) and (4.2), we get
$\Gamma_{j k}^{* i}(x, y)=\bar{\Gamma}_{j k}^{* i}(x, y)$
Following É . Cartan [2], let a vertical stroke $\left.\right|_{j}$, follow by an index denote covariant derivative with respect to y, the covariant derivative of any contravariant vector field $X^{i}(x, y)$ with respect to y^{j} is defined as follows:

$$
\begin{equation*}
\left.X^{i+}\right|_{j}:=\dot{\partial}_{j} X^{i}+X^{r} C_{r j}^{i} \tag{3.3}
\end{equation*}
$$

where a positive sign below an index and following by a vertical stroke indicates that the covariant derivative has been formed with respect to the connection $\Gamma_{k j}^{* i}$ as for as that index is concerned. The covariant derivative defined in (3.3) is called \oplus-covariant differentiation of $X^{i}(x, y)$ with respect to y^{j} also is called v-covariant differentiation (Cartan's first kind covariant differentiation).
The entities $\stackrel{+}{R_{j k h}^{i}}$ and $\stackrel{\stackrel{+}{K}}{j k h}$ are called the curvature tensors (with respect to the \oplus-covariant derivative) of Finsler space with respect to the non-symmetric connection $\Gamma_{j k}^{* i}$ such that
$\stackrel{+}{R_{j k h}^{i}}=\dot{\partial}_{h} \Gamma_{j k}^{* i}+\left(\dot{\partial}_{s} \Gamma_{j k}^{* i}\right) G_{h}^{s}+C_{j m}^{i}\left(\dot{\partial}_{k} G_{h}^{m}-G_{k l}^{m} G_{h}^{l}\right)+\Gamma_{m k}^{* i} \Gamma_{j h}^{* m}$
$-\dot{\partial}_{k} \Gamma_{j h}^{* i}-\left(\dot{\partial}_{s} \Gamma_{j h}^{* i}\right) G_{k}^{s}-C_{j m}^{i}\left(\dot{\partial}_{h} G_{k}^{m}-G_{h l}^{m} G_{k}^{l}\right)-\Gamma_{m h}^{* i} \Gamma_{j k}^{* m}$
and
$\stackrel{+}{K_{j k h}^{i}}:=\partial_{h} \Gamma_{j k}^{* i}+\left(\dot{\partial}_{s} \Gamma_{j h}^{* i}\right) G_{k}^{s}+\Gamma_{m h}^{* i} \Gamma_{k j}^{* m}-\partial_{h} \Gamma_{j k}^{* i}-\left(\dot{\partial}_{s} \Gamma_{j h}^{* i}\right) G_{k}^{s}-$ $\Gamma_{m h}^{* i} \Gamma_{k j}^{* m}$

These curvature tensors $\stackrel{\stackrel{+}{R}}{j k h}$ and $\stackrel{+}{K_{j k h}^{i}}$ are satisfying the following:
a) $\quad \stackrel{+}{R_{j k h}^{i}} y^{j}=\stackrel{+}{R_{k h}^{i}} \quad$,
b) $\quad \stackrel{+}{R_{j k i}^{i}}=\stackrel{+}{R_{j k}}$,
c) $\stackrel{+}{K}_{j k h}^{i} y^{j}=\stackrel{+}{K}{ }_{k h}^{i} \quad$ and
d) $\stackrel{+}{K_{j k i}^{i}}=\stackrel{+}{K_{j k}}$.

Henceforth a Finsler space F_{n} equipped with non-symmetric connection will be written as F_{n}^{*}.

A Finsler space F_{n}^{*} is said to be a generalized $\stackrel{+}{R^{v}}$ - non symmetric recurrent space and a generalized $\stackrel{+}{K}{ }^{v}$ - non symmetric recurrent space when Cartan's curvature tensors field $\stackrel{+}{R}_{j k h}^{i}(x, y)$ and $\stackrel{+}{K_{j k h}^{i}}(x, y)$ are satisfingthe following conditions

$$
\begin{equation*}
\left.\stackrel{+}{R_{j k h}^{i}}\right|_{l}=\lambda_{l} \stackrel{+}{R_{j k h}^{i}}+\mu_{l}\left(\delta_{h}^{i} g_{j k}-\delta_{k}^{i} g_{j h}\right) \tag{3.5}
\end{equation*}
$$

$\stackrel{+}{R_{j k h}^{i}} \neq 0$
and

$$
\begin{equation*}
\left.\stackrel{+}{K_{j k h}^{i}}\right|_{l}=\lambda_{l} \stackrel{+}{K_{j k h}^{i}}+\mu_{l}\left(\delta_{h}^{i} g_{j k}-\delta_{k}^{i} g_{j h}\right) \tag{3.6}
\end{equation*}
$$

$\stackrel{+}{K}{ }_{j k h}^{i} \neq 0$,
respectively. We shall denote them briefly by $G \stackrel{+}{R^{v}}-R F_{n}^{*}$ and $G \stackrel{+}{K^{v}}-R F_{n}^{*}$, respectively.
Transvecting the conditions (3.5) and (3.6) by y^{j}, using (1.7a), (3.4a), (1.2a), (3.4c) and in view of (1.1), we get

$$
\begin{equation*}
\left.\stackrel{+}{R_{k h}^{i}}\right|_{l}=\lambda_{l} \stackrel{+}{R}_{k h}^{i}+\stackrel{+}{R_{l k h}^{i}}+\mu_{l}\left(\delta_{h}^{i} y_{k}-\delta_{k}^{i} y_{h}\right) \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\stackrel{+}{K}_{k h}^{i}\right|_{l}=\stackrel{+}{l}_{l} \stackrel{i}{i}_{k h}+\stackrel{+}{K_{l k h}^{i}}+\mu_{l}\left(\delta_{h}^{i} y_{k}-\delta_{k}^{i} y_{h}\right) \tag{3.8}
\end{equation*}
$$

respectively.
Thus, we conclude

Theorem 3.1. In $G \stackrel{+}{R^{v}}-R F_{n}^{*}$ and $G \stackrel{+}{K}^{v}-R F_{n}^{*}$, the v-covariant derivative of the first order for the torsion tensors $\stackrel{\stackrel{+}{R}}{\text { kh }}$ and $\stackrel{\stackrel{+}{K}}{\mathrm{kh}}$ given by the conditions (3.7) and (3.8), respectively.
The conditions (3.7) and (3.8) can be written as

$$
\begin{equation*}
\stackrel{+}{R_{l k h}^{i}}=\left.\stackrel{+}{R_{k h}^{i}}\right|_{l}-\lambda_{l} \stackrel{+}{R}{ }_{k h}^{i}-\mu_{l}\left(\delta_{h}^{i} y_{k}-\delta_{k}^{i} y_{h}\right) \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\stackrel{+}{K_{l k h}^{i}}=\left.\stackrel{\stackrel{+}{K}}{k h}\right|_{l}-\lambda_{l} \stackrel{+}{K_{k h}^{i}}-\mu_{l}\left(\delta_{h}^{i} y_{k}-\delta_{k}^{i} y_{h}\right), \tag{3.10}
\end{equation*}
$$

respectively.
Thus, we conclude
Theorem 3.2. InG $\stackrel{+}{R}^{v}-R F_{n}^{*}$ and $G \stackrel{+}{K}^{v}-R F_{n}^{*}$, the curvature tensors $\stackrel{+}{R_{j k h}^{i}}$ and $\stackrel{+}{K_{j k h}^{i}}$ defined by the conditions (3.9) and (3.10), respectively.
Contracting the indices i and h in the conditions (3.5) and (3.6), using (3.4b), (3.4d) and in view of (1.1), we get

$$
\begin{equation*}
\left.\stackrel{+}{R}_{j k}\right|_{l}=\lambda_{l} \stackrel{+}{R}_{j k}+(n-1) \mu_{l} g_{j k} \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\stackrel{+}{K}_{j k}\right|_{l}=\lambda_{l} \stackrel{+}{K}_{j k}+(n-1) \mu_{l} g_{j k} \tag{3.12}
\end{equation*}
$$

respectively.
The conditions (3.11) and (3.12) show that $\stackrel{+}{R}$-Ricci tensor $\stackrel{+}{R}$ 位 and $\stackrel{+}{K}$-Ricci tensor $\stackrel{+}{K}_{j k}$ cannot vanish, since the vanishing of any one of them would imply the vanishing of the covariant vector field μ_{l}, i.e. $\mu_{l}=0$, a contradiction.

Thus, we conclude
Theorem 3.3. In $G \stackrel{+}{R^{v}}$ - $R F_{n}^{*}$ and $G \stackrel{+}{K^{v}}-R F_{n}^{*}$, the v-covariant derivative of the first order for $\stackrel{+}{R}$-Ricci tensor $\stackrel{+}{R}_{j k}$ and $\stackrel{+}{K}$-Ricci tensor $\stackrel{+}{K}_{j k}$ are non-vanishing.

Now, let usconsider the decomposability of the curvature tensor field $\stackrel{\stackrel{+}{R}}{R_{j k h}^{i}}$ in a Finsler space F_{n}^{*}, since the curvature tensor under consideration is a mixed tensor of rank 4 , hence it may be written either as a tensor product of a vector and a tensor of rank 3 or as a tensor product of two tensors each of rank 2 . In the first case, the possibilities forms of decomposition for the curvature tensor $\stackrel{+}{R_{j k h}^{i}}$ are as follows:
a) $\quad \stackrel{+}{R_{j k h}^{i}}=X^{i} \Psi_{j k h}$
b) $\quad \stackrel{+}{R_{j k h}^{i}}=X_{j} \Psi_{k h}^{i}$
c) $\quad \stackrel{+}{R_{j k h}^{i}}=X_{k} \Psi_{j h}^{i} \quad$ and
d) $\quad \stackrel{+}{R_{j k h}^{i}}=X_{h} \Psi_{j k}^{i}$

In the second case the possibilities are as follows:
a) $\quad \stackrel{+}{R_{j k h}^{i}}=q_{j}^{i} \Psi_{k h} \quad$,
b) $\quad \stackrel{+}{R_{j k h}^{i}}=q_{k}^{i} \Psi_{j h} \quad$ and
c) $\stackrel{+}{R_{j k h}^{i}}=q_{h}^{i} \Psi_{j k}$.

Similarly, the possibilities form of decomposition for the curvature tensor $\stackrel{\stackrel{+}{K}}{j k h}$ are as follows:
a) $\quad \stackrel{+}{K_{j k h}^{i}}=X^{i} \Psi_{j k h}$
b) $\stackrel{\stackrel{+}{K}}{j k h}=X_{j} \Psi_{k h}^{i}$
c) $\stackrel{\stackrel{+}{K}}{\dot{j} k h}=X_{k} \Psi_{j h}^{i} \quad$ and
d) $\quad \stackrel{+}{K_{j k h}^{i}}=X_{h} \Psi_{j k}^{i}$

In the second case the possibilities are as follows:
a) $\quad \stackrel{+}{K_{j k h}^{i}}=q_{j}^{i} \Psi_{k h} \quad$,
b) $\quad \stackrel{+}{K_{j k h}^{i}}=q_{k}^{i} \Psi_{j h} \quad$ and
c) $\stackrel{+}{K_{j k h}^{i}}=q_{h}^{i} \Psi_{j k}$.

Out of several possibilities given by (3.13), (3.14), (3.15) and (3.16), our goal is to study the possibilities given by (3.13a), (3.13b), (3.15a) and (3.15b).

Suppose that Cartan's third curvature tensor $\stackrel{\stackrel{+}{R}}{\dot{j} k h}$ and Cartan's fourth curvature tensor $\stackrel{\stackrel{+}{K}}{j k h}$ are decomposed in the forms (3.13a) and (3.15a), respectively.
Taking the v-covariant derivative of the forms (3.13a) and (3.15a) with respect to y^{l}, we get

$$
\begin{equation*}
{\left.\stackrel{+}{R_{j k h}^{i}}\right|_{l}=\left.X^{i}\right|_{l} \Psi_{j k h}+\left.X^{i} \stackrel{+}{\Psi}_{j k h}\right|_{l}, ~}_{l} \tag{3.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\stackrel{+}{K}_{j k h}^{i}\right|_{l}=\left.X^{i}\right|_{l} \Psi_{j k h}+\left.X^{i} \stackrel{+}{\Psi}_{j k h}\right|_{l} \tag{3.18}
\end{equation*}
$$

respectively.
Using the conditions (3.5) and (3.6) in (3.17) and (3.18), respectively, we get
$\lambda_{l} \stackrel{+}{R}_{j k h}^{i}+\mu_{l}\left(\delta_{h}^{i} g_{j k}-\delta_{k}^{i} g_{j h}\right)=\left.X^{i}\right|_{l} \Psi_{j k h}+\left.X^{i} \stackrel{+}{\Psi}{ }_{j k h}\right|_{l}$
and
$\lambda_{l} \stackrel{+}{K_{j k h}^{i}}+\mu_{l}\left(\delta_{h}^{i} g_{j k}-\delta_{k}^{i} g_{j h}\right)=\left.X^{i}\right|_{l} \Psi_{j k h}+\left.X^{i} \stackrel{+}{\Psi}_{j k h}\right|_{l}$.
In view of (3.13a) and (3.15a) and if the decomposable vector X^{i} supposed to be a covariant constant, then from (3.17) and (3.18) together, we immediately get
$\lambda_{l} X^{i} \Psi_{j k h}+\mu_{l}\left(\delta_{h}^{i} g_{j k}-\delta_{k}^{i} g_{j h}\right)=\left.X^{i} \stackrel{+}{\Psi}_{j k h}\right|_{l}$
which can be written as
(3.19) $\left.\quad \stackrel{+}{\Psi}_{j k h}\right|_{l}=\lambda_{l} \Psi_{j k h}+\phi_{l}\left(\delta_{h}^{i} g_{j k}-\delta_{k}^{i} g_{j h}\right) \quad$, where $\phi_{l}=\frac{\mu_{l}}{X^{i}}$.

Thus, we conclude
Theorem 3.4.In $G \stackrel{+}{R^{v}}-R F_{n}^{*}$ and $G \stackrel{+}{K}^{v}-R F_{n}^{*}$, the decomposable tensor field $\Psi_{j k h}(x, y)$ is generalized recurrent if the decomposable vector X^{i} assumed to be a covariant constant.

Transvecting (3.19) by y^{j}, using (1.7a) and in view of (1.1), we get

$$
\begin{equation*}
\left.\stackrel{+}{\Psi}_{k h}\right|_{l}=\lambda_{l} \Psi_{k h}+\Psi_{l k h}+\phi_{l}\left(\delta_{h}^{i} y_{k}-\delta_{k}^{i} y_{h}\right) \tag{3.20}
\end{equation*}
$$

where $\Psi_{j k h} y^{j}=\Psi_{k h}$ and $\dot{\partial}_{j} \Psi_{k h}=\Psi_{j k h}$.
Thus, we conclude
Theorem 3.5.InG $\stackrel{+}{R^{v}}-R F_{n}^{*}$ and $G \stackrel{+}{K}{ }^{v}-R F_{n}^{*}$, the v-covariant derivative for the decomposable tensor field $\Psi_{k h}(x, y)$ is given by the condition (3.20), if the decomposable vector X^{i} assumed to be a covariant constant.

References

1.AhsanZ. and Ali M.: On some properties of W-curvature tensor, Palestine Journal of Mathematics, Polytechnic University-PPU, Vol. 3(1) (2014), 61-69.
2.Cartan,É.: sur les espaces de Finsler, C.R .Acad. Sci. Paris, 196, (1933), 582-586.
3.De.U.C. and Guha, N.:On generalized recurrent manifolds, proc. Math. Soc., 7, (1991), 7 -11.
4.Dikshit, S.: Certain types of recurrences in Finsler spaces, D. Phil. Thesis, University of Allahabad, (Allahabad), (India), (1992).
5.Dubey, R.S.D. and Srivastava, A. K.:On recurrent Finsler spaces, Bull. Soc. Math. Belgique, 33,(1981), 283-288.
6.Maralebhavi,Y.B. and Rathnamma M.: Generalized recurrent and concircular recurrent manifolds, Indian J. Pure Appl. Math., 30 (11), (1999), 1167-1171.
7.Matsumoto, M.:On h-isotropic and C^{h}-recurrent Finsler, J. Math. Kyoto Univ., 11(1971), 1-9.
8.Mishra, C.K. and Lodhi, G.: On $\mathbf{C}^{\text {h }}$-recurrent and $\mathbf{C}^{\mathbf{v}}$-recurrent Finsler spaces of second order, Int. J. Contemp. Math. Sciences, Vol. 3, No. 17, (2008), 801-810.
9.Mishra, P., Srivistava, K. and Mishra, S.B.: Decomposition of curvature tensor field $\quad \stackrel{+}{R_{j k h}^{i}}(x, y)$ in a Finsler space equipped with non-symmetric connection, Jour. Chem. Bio. Phy. Sci. Sec., Vol. 3, No.2, (2013), 1498-1503.
10.Pandey, P.N.:A recurrent Finsler manifold with a concircular vector field Acta, Math. Acad, Sci. Hunger, 35 (3-4), (1980), 465-466.
11.Pandey, P.N.:A note on recurrence vector, Proc. Nat. Acad. Sci. India, 51(A),(1981),6-8.
12.Pandey, P.N. and Misra, R.B.: Projective recurrent Finsler manifold I, Publications Mathematicae Debrecen , 28(3-4), (1981), 191-198.
13.Pandey, P.N. and Dwivedi, V.J.: On T-recurrent Finsler spaces, Progr. Math.Varanasi, 21(2), (1987) ,101-112.
14.Pandey, P.N. and Pal, S.: Hypersurface of a recurrent Finsler spaces, J. Int. Acad. Phy. Sci., 7,(2003), 9-18.
15.Pandey, P.N., Saxena, S. and Goswani, A.: On a generalized Hrecurrent space, Journal of International Academy of Physical Sciences,Vol.15, (2011), 201-211.
16.Qasem. F.Y.A.: On transformation in Finsler spaces, D. Phil Thesis, University of Allahabad, (Allahabad), (India), (2000).
17.Qasem, F.Y.A. and AL-Qashbari, A.M.A.:On study generalized H^{h} - recurrent Finsler spaces, Journal of yemen engineer, University of Aden, (Aden), (Yemen), Vol.14, November. (2015), (Accepted).
18.Qasem, F.Y.A. and AL-Qashbari, A.M.A.:Certain Identities in Generalized R^{h}-Recurrent Finsler Space, International Journalof Innovation in Science and Mathematics (IJISM), (India), Vol.4,(March 2016).
19.Rund, H.:The differential geometry of Finsler spaces, SpringerVerlag, Berlin-Göttingen-Heidelberg, (1959); $2^{\text {nd }}$ Edit. (in Russian), Nauka, (Moscow), (1981).
20.Verma, R.:Some transformations in Finsler spaces, D. Phil. Thesis, University of Allahabad, (Allahabad), (India), (1991).
21. Vranceanu, G.H.: Lectii de geometric differential, EDP, BUV Vol. 1, (1962).
22.Zlatanović, M.L. and Minčić, S.M.:Identities for Curvature Tensors in Generalized Finsler space, Faculty of Sciences and Mathematics, University of Nis, Serbia, Filomat, 23, (2009), 34-42.

حول تُعيم فضاءات غير متماثلة أحادية المعاودة

fahmiyaseen@hotmail.com فهمي ياسين عبده قاسم
عادل محمد علي القشثبري Adel_ma71@yahoo.com
قسم الرياضياتـ كليةالتربية /عدن-
جامعة عدن - خورمكس - عدن - الجمهورية اليمنية
(الملخص
R ${ }^{j}{ }^{i}$ في هذه الورقة ، عرفنا فضـاء فنسلر الذي يكون فيه تقوس كارتان الثالث و الر ابع K K يحققان في مفهوم كارتان العلاقتين الآتيتين :

$$
\begin{aligned}
&\left.R_{j k h}^{i}\right|_{l}=\lambda_{l} R_{j k h}^{i}+\mu_{l}\left(\delta_{h}^{i} g_{j k}-\delta_{k}^{i} g_{j h}\right) \quad R_{j k h}^{i} \neq 0 \\
&\left.K_{j k h}^{i}\right|_{l}=\lambda_{l} K_{j k h}^{i}+\mu_{l}\left(\delta_{h}^{i} g_{j k}-\delta_{k}^{i} g_{j h}\right)
\end{aligned}
$$

حيث حقول غير صفرية لمتجهات متحدة الاختلاف و أطلقنا على هذه الفضـاءات تعميم فضاء فنسلر بالرموز التالية R $F_{n} G R^{v}$ - و $R F_{n} G K^{v}$-على النو الي، وكذللك تم إيجاد العديد من
 الكثير من هذه النقوسات في هذه الفضـاءات لا تتتهي، كذلك قدمنا تعريف التعميمات للموترات اللتقوسية في فضاء فنسلر، التي يكون فيها كل من الموتر التقوسي الثالث
 المعممة وتم الحصول على العديد من المتطابقات و المبر هنات المختلفة ذات الصلة بهذا الفضاء، كذلك أثبتتا بأن نقوسات رتثي .

- K أحادي المعاودة، تعميم فضاء فنسلر فنسلر

[^0]: *The indices i, j, k, m assume positive integral values from 1 to n.

